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Abstract 

To calculate many of the important performance measures for an emergency response system one requires 

knowledge of the probability that a particular server will respond to an incoming call at a particular 

location.  Estimating these “dispatch probabilities” is complicated by four important characteristics of 

emergency service systems.  We discuss these characteristics and extend previous approximation methods 

for calculating dispatch probabilities, to account for the possibilities of workload variation by station, 

multiple vehicles per station, call and station dependent service times, and server cooperation and 

dependence. 
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1. Introduction 

The primary performance measures for an emergency service system are typically cost and some measure 

of speed of response, for example, average response time or fraction of calls responded to within some 

time standard (i.e., coverage).  Therefore, when evaluating a strategic or operational change, it is important 

to accurately estimate the impact on speed of response.  An essential input for calculating coverage and 

other response time performance measures is the probability that an incoming call at a particular location 

is served by a particular server.  When these dispatch probabilities are known, many system-wide 

performance measures can be calculated easily, by conditioning on the location of the call and the location 

of the server, and then using the law of total probability. 

Broadly speaking, there are three alternatives for evaluating the performance of the system we are 

interested in: (1) an exact approach, such as Larson’s (1974) exact hypercube model, (2) discrete event 

simulation, or (3) approximations, such as Larson’s (1975) approximate hypercube (AH) model.  

Compared to simulation and exact approaches, the advantages of the various versions of the AH model are 

that they are fast, with computation times that are relatively insensitive to system characteristics, and they 

are sufficiently accurate for many practical purposes.  In many cases, we believe it is appropriate to use an 

approximation to facilitate comparison of alternatives (for example, as part of an optimization heuristic for 

station location, vehicle allocation, or shift scheduling) and then to use simulation or an exact approach to 

further evaluate the most promising alternatives.  Approximate approaches generally make simplifying 

assumptions regarding one or more of the following four system characteristics: 

1) Number of vehicles per station: It is common to assume only one vehicle per station.  This is a 

restrictive assumption because neighborhoods with high demand density, fixed costs of building a 

station, or limitations on the number of available station sites may make it economical or necessary to 

have multiple vehicles at the same station.   

2) Average workload: Some models assume that all vehicles have the same average utilization 

irrespective of the vehicle’s home station.  This is unrealistic because spatial variation in demand and 

transport network characteristics will tend to create imbalances in workload. 

3) Average service time: Some models assume that average service time (the time a vehicle is 

unavailable to respond to new calls while responding to a specific call) is either independent of the 

location of the vehicle’s home station, or independent of the location of the call, or both.  The service 

time depends on these two locations due to the travel time between the two, but components other than 

the travel time might depend on the location of the call or responding station as well.   
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4) Server cooperation: Two extremes are to either assume that each station operates as an independent 

subsystem or assume that any call is equally likely to be responded to by any available vehicle.  These 

extremes simplify modeling, but reality is somewhere in between.  Assumptions of no server 

cooperation and a single vehicle per station imply that the status (busy or idle) of an ambulance is 

statistically independent of the status of other vehicles.  Thus, the “no cooperation” assumption is 

related (but not equivalent) to the common “server independence” assumption. 

All of these assumptions are violated to a significant degree in real systems.  Larson’s (1975) AH model 

allows workload to vary between servers and models server cooperation, but it assumes one server at each 

station and average service times that are independent of both the server and call location.  Jarvis (1985) 

extended the AH model to allow average service times to depend on the server and call location.   

Our main contribution is a version of the AH model that computes station-specific (rather than 

server-specific) busy fractions and dispatch probabilities, and allows multiple vehicles at a station.  We 

find it more natural and convenient to organize the model around stations rather than servers for the 

systems that we have worked with.  We give a theoretical convergence guarantee for a restricted version 

of the procedure (see Goldberg and Szidarovszky (1991) for related results).  Burwell, Jarvis, and 

McKnew (1993) extended the AH model to account for ties in preferences for servers.  Although there 

may be reasons for preference ties other than multiple vehicles at a station, in our experience these reasons 

are not common, and by focusing on multiple vehicles at a station rather than the general case of 

preference ties, we obtain a simpler procedure.  The main difference between our work and that of 

Burwell, Jarvis, and McKnew (1993) is that they use the original correction factors developed by Larson 

(1975), assuming random sampling of vehicles, whereas we introduce a new set of correction factors, 

based on random sampling of stations. 

Our procedure makes none of the simplifying assumptions about the four characteristics discussed 

above.  The procedure is fast and converges in all cases that we have tried.  It generally provides estimates 

of busy fractions with 2% relative error or less when compared with simulation, which is considerably 

more accurate than a procedure that ignores server dependence. 

The remainder of the paper is structured as follows.  Section 2 defines notation, derives station-

specific correction factors, and presents our algorithm and a convergence guarantee.  Section 3 

summarizes computational testing of the procedure.  An online companion contains a more extensive 

literature review, a comparison of the AH model to simulation and the exact hypercube model, a 

derivation of the station-specific correction factors, a proof of the convergence result provided in 
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the paper, a discussion of sensitivity to the service time distribution, and additional computational results. 

2 The Approximation Procedure 

We assume that s vehicles are distributed among I stations, with 
i

s  vehicles at station i, with 1
i

s ≥  for all 

i.  Calls for service arrive according to independent Poisson processes from J demand nodes, with arrival 

rate λj from node j, and a total arrival rate of 
1

J

jj =
λ = λ∑ .  The average service time for calls originating 

at node j served by an ambulance from station i  is 
ij

τ .  This includes the average travel time between 

station i  and node j , the average time spent on scene, the average transport time to a hospital, and the 

average time spent at the hospital.  We assume a fixed dispatch policy, where the preference of station i  

in the dispatch order for node j  is given by aij (for example 3
ij

a =  means that station i  is the 3
rd

 most 

preferred for responding to a call from node j ).  We assume that calls that arrive when all vehicles are 

busy do not queue but are handled through other means, for example by supervisor vehicles.  This “no 

queue” assumption is common in the literature (for example see Jarvis, 1985) and it is consistent with the 

operation of the emergency service systems that we are familiar with.  We refer to calls that arrive when 

all vehicles are busy as “lost,” and define 
s

P  to be the probability that a call is lost.  This loss probability is 

the same for all demand nodes, assuming that the node arrival rates are not influenced by which vehicles 

are busy.  As Larson (1975), we use an / / /M M s s  system to approximate certain aspects of the system 

of interest.  According to a well-known insensitivity result, steady occupancy probabilities for the 

/ / /M M s s  model are insensitive to the shape of the service time distribution beyond the mean (Gross 

and Harris, 1998).  Computational experiments by Jarvis (1985) suggest that the system we are modeling 

is also relatively insensitive to the shape of the service time distributions.  This is important because 

service time distributions for emergency services will often be far from exponential. 

We define the dispatch probabilities as 

 Pr{ vehicle from station  responds |  call from node  }ijf i j=  (1) 

with 
1

1
I

ij si
f P

=
+ =∑  for all j.  We use 

i
r  for the utilization of servers from station i, ρ for the system-wide 

average offered load per server, and (1 )
s

r P= ρ −  for the system-wide average server utilization.  If we 

know the distribution for the response time ijR  for all station-node pairs, then we can calculate 
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performance measures such as coverage or average response time (for calls that are not lost) using 

 
1 1

coverage Pr{ time standard}
J I

j

ij ij

j i

f R
= =

λ
= ≤

λ
∑ ∑  (2a) 

 
1 1

average response time E[ ]
1

J I
j ij

ij

j i s

f
R

P= =

λ
=

λ −
∑ ∑  (2b) 

We can also compute coverage or average response times for specific demand nodes, with straightforward 

modifications to equations (2). 

The procedure we present generalizes Larson’s (1975) AH model.  As in Jarvis (1985), we start by 

applying Little’s law to the 
i

s  servers at station i .  The dispatch rate for this station equals 
1

J

j ijj
f

=
λ∑ .  

The average service time for calls that station i  responds to is 
1 1

J J

j ij ij j ijj j
f f

= =
λ τ λ∑ ∑ .  Little’s law 

implies that the average number of busy servers at station i , 
i i

s r , equals the total dispatch rate to the 

station multiplied by the average service time for calls that the station responds to, which implies  

1

1 J

i j ij ij

ji

r f
s =

= λ τ∑ . (3) 

The only unknown quantities on the right-hand-side of (3) are the dispatch probabilities
ij

f .  If we could 

approximate these probabilities as a function of known quantities and the busy fractions 
i

r , then we would 

have the ingredients for an iterative procedure for estimating the busy fractions and dispatch probabilities. 

Like Larson (1975) and Jarvis (1985), we begin with the “server independence” assumption.  When 

1
i

s =  for all i  and station i  is the 
th

k  preferred for node j  (
ij

a k= ), this assumption leads to 

approximating the dispatch probability, 
ij

f , with the product of the probabilities that ambulances at all 

more preferred stations are busy, multiplied with the probability that station i  has a free ambulance.  To 

improve this approximation, Larson and Jarvis multiplied this product with a factor  Q  to approximately 

correct for the erroneous assumption of server independence, i.e.,  

 
1

( )

1

( , , ) (1 )
k

ij l j i

l

f Q s k r r
−

=

≈ ρ −∏ , (4) 
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where ( )l j
r  is the busy fraction for the 

th
l  preferred station for node j  and ρ  is an estimate of the overall 

system load per server (we discuss how to estimate ρ  at the end of the section).  The correction factor 

involves occupancy probabilities for an / / /M M s s  loss system.  Denoting the steady state probability 

that the loss system has n  customers by 
n

P , the correction factor in (4) can be expressed as 

 ( )
( )( ) ( )

( )
( )

11
0

1
1

( )!
, ,

! 1 1 1 !1

u u ks

k
u ks s

s u sP s k
Q s k

s P u kP

− +−

−
= −

 − ⋅ ⋅ ρ−
ρ = ⋅ ⋅   − ρ − − +−  

∑  (5) 

Combining equations (3), (4), and (5) leads to an iterative procedure for approximating the busy fractions 

and dispatch probabilities, for a situation where each station has a single server.   

To allow for more than one ambulance at some stations, we generalize equations (4) and (5).  The 

multi-vehicle counterpart to equation (4) is 

 ( )

1

( ) ( )

1

({ }, , ) (1 )l j i

k
s s

ij j k j l j i

l

f Q s k r r
−

=

≈ ρ −∏ , (6) 

where ( )k j
s  is the number of ambulances at the 

th
k  preferred station for node j  and we continue to 

assume that 
ij

a k= .  In this equation, the correction factor depends not only on ,  s ρ , and k , but also on 

how the s  ambulances are distributed between stations and on the node j .  This is because the 

probability that an ambulance from station i  is dispatched to a call from node j  depends not only on the 

number of stations that are preferred (by node j ) to station i  but also on the number of ambulances at 

those stations.  If the problem is constrained to allow only one ambulance per station, then this distinction 

between ambulances and stations disappears. 

The station specific correction factors can be expressed as follows: 

 

( )

( 1) ( )

( 1)

( 1) ( )

1 11

0

0 0

( )

( )

!
({ }, , )

1

k j k j

k j

k j k j

z zns

n z u u

j k j z s

s n u n u
P

n s u s u
Q s k

r r

−

−

−

− −−

= = =

 ρ − −
− 

− −  ρ =
−

∑ ∏ ∏
 (7) 

Equations (3), (6), and (7) provide the building blocks that we use in our algorithm to estimate station-

specific busy fractions and dispatch probabilities, as we describe next. 

 

 



 

6 

The algorithm begins by calculating the following; 

 

th

th

( )

( ) (1) (2) ( )

( )

 preferred station for node 

number of vehicles at  preferred station for node 
kj

kj

kj

k j b

k j j j k j

k j b j

b k j

s s k j

z s s s

=

= =

= + + +

τ = τ

K
 

Next, initialize the busy fractions and the system-wide average service time, by assuming that the 

system operates as an / / /M M s s  queue (superscripts are used as iteration counters): 

 

( )

0

1 1

0 0 0 0

1

1

I J

i j ij

i j

i s

s
s

r r P s

= =

τ = λ τ
λ

= = λτ −

∑ ∑
 

where 
0

s
P  is calculated using Erlang’s loss formula.  Set the iteration counter, h , to 1 and enter the 

iterative process.  Each iteration consists of the following steps: 

Step 1:  Use 
1h−τ , λ , and s  to calculate 0

h
P  and 

h

s
P . 

Step 2:  Calculate 
h

i
V  for all i , using (13) and the following: 

  ( ) ( )

1

-1 1 or 

( ) ( )

1 1

({ }, , )
ij

l j

aJ
s

h h h h

i j ij j k j ij l j

j l

V Q s a r

−

−

= =

= λ τ ρ∑ ∏  (8) 

where 
1 or 

( )

h h

l jr
−

 means ( )

h

l jr  if it has been computed, and otherwise 
1

( )

h

l jr
−

.  In other words, we 

use a Seidel process, i.e., we always use the most recently computed station utilization.  Then, 

update the station-specific busy fractions using (9) if 
1 0.5h

r
− ≤  and using (10) otherwise. 

  

( )
1

1 i

h
h i

i s
h h

i i i

V
r

s r V
−−

=
+

 (9) 

  
( )

1

1
1

i

i

s
h

h i
i s

h h

i i i

V
r

V s r
−−

 
 =
 +   (10) 

Step 3: Calculate 
h

ijf  using (6), normalize these probabilities using 
1

(1 ) /
Ih h h h

ij ij s iji
f f P f

=
← − ∑  

and calculate 
hτ , 

hρ , and 
hr  using  

  1 1 1

1 1
, / ,

(1 )

J I I
h h h h h h

j ij ij i i

j i is

f s r s r
P s= = =

τ = λ τ ρ = λτ =
λ −

∑ ∑ ∑
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Step 4: If 
1h h

i i
r r −− < ε  for all i  then stop.  Otherwise, set 1h h= + . 

Some observations about the algorithm are in order.  First, there is no assurance that the dispatch 

probabilities ijf , calculated using (6), will satisfy the normalization condition 
1

1
I

ij si
f P

=
+ =∑ .  We found 

that enforcing this normalization in Step 3 tended to improve accuracy of the station-specific utilizations 

slightly.  Larson (1975) discusses this and other more complex methods for normalizing dispatch 

probabilities.  Second, equations (9) and (10) are both obtained by rearranging equation (3) after 

substituting equations (6) and (7).  We found that equation (9) led to faster convergence for low system 

loads while equation (10), which guarantees that 0 1h

i
r< < , led to more reliable convergence for high 

system loads; hence our suggestion to use (9) when the initial system load estimate 
0r  is less than or equal 

to 50% and to use (10) otherwise.  Finally, although the algorithm above has converged in all of our 

experiments, we have no theoretical guarantee that it will always do so.  However, a restricted version of 

the algorithm is guaranteed to converge (Goldberg and Szidarovszky, 1991, and our online supplement).   

Theorem 1: Suppose that the average service time τ , the system load ρ , the loss probability 
s

P , and the 

correction factors ( )({ }, , )
j k j

Q s kρ  are calculated only once, at the beginning of the algorithm, equation 

(16) is always used to update the busy fractions, and a Gauss (rather than Seidel) iterative process is used.  

If the busy fractions are initialized to 
0 1

i
r =  for all i, then the algorithm is guaranteed to converge. 

3. Computational Results 

We implemented the algorithm in VBA for MS Office.  The computational times given below are based 

on this implementation, running on a 2.4 GHz PC. 

We used two datasets to investigate the convergence of the algorithm.  Using information from 

Burwell (1986) for Greenville County, South Carolina, with 99 demand nodes and 5 stations, we 

generated 3,124 cases.  The procedure converged in all cases, requiring at most 10 iterations and 0.09 

seconds of computation.  The second dataset, from Edmonton, Alberta (Ingolfsson, Erkut, and Budge, 

2003), consists of 180 demand nodes and 10 stations with specified capacities ranging from one to four, 

resulting in 55,403 cases.  For this larger problem, the algorithm again converged in all cases, but required 

up to 32 iterations and 0.5 seconds to converge.  The algorithm has been used as part of a decision support 

system for the Calgary (Alberta) Emergency Medical Services system, with over 1,000 demand nodes and 

20-40 ambulances, depending on time of day.  In this setting, each run of the algorithm takes 

about 15 seconds.  We see that despite the speed of the method, computation time will limit the 
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number of scenarios that a user may wish to explore.  If simulation of an exact solution method were used 

instead, the computation times would be considerably larger. 

We compared the results of our procedure to the results of a discrete event simulation model, for 12 

ambulance allocations using the Edmonton dataset, in order to evaluate the accuracy of the estimation 

procedure.  We simulated each allocation for system loads ( / sρ = λτ ) ranging from 0.1 to 0.9 by varying 

the total arrival rate of calls to the system.  We compared simulated and estimated vehicle utilizations for 

108 cases (12 allocations × 9 system utilizations).  For ease of reading, for the remainder of the section we 

use “average error” to mean the average (across stations) of the absolute errors and “average relative 

error” to mean the average (across stations) of the relative errors.  Table 1 shows the results, with typical 

average relative errors below 2%.  The average relative errors tend to be highest for system loads in the 

middle of the range (and lower for very low or very high system loads).  This contrasts with the results 

under the independence assumption (the shaded cells in Table 1), with average relative errors often 

exceeding 2% and in general showing a pattern of increasing errors with increasing system loads.  Table 2 

shows an example of the results using our procedure, for a realistic allocation with 14 ambulances and 

system load of 0.3.  The agreement between the simulated and approximated busy fractions is rather good, 

with most of the relative errors below 2%. 

Figure 1 shows the impact of modeling the server unavailability on coverage (calculated using (2a)), 

and specifically includes the model with a constant system-wide busy fraction as a comparison point.  

First, comparing the estimated coverage when the vehicles are assumed to always be available (i.e., using 

a system-wide busy fraction of zero) to that when assuming a constant system-wide busy fraction (using 

the average of the estimated station-specific busy fractions), the overall coverage of the system is seriously 

overestimated (a difference of over 6%).  Next, dispatch probabilities based on a system-wide busy 

fraction assumption in turn overestimate the coverage of the system compared to the more realistic 

dispatch probabilities calculated using station-specific busy fractions and correction factors for 

dependence.  Although the difference may seem small at 1.9%, in previous work we found that such a 

difference was actually very significant, in that it would require fairly major changes to the system (for 

example adding two ambulances around the clock) in order to attain such a difference when the system 

coverage was in the vicinity of 90%.  Additionally, if the coverage values for sections of the city are 

considered, the differences can be much larger.  Consider the two extreme cases; the neighborhoods 

around the stations with the highest and lowest estimated busy fractions respectively.  In the first case, the 

ambulances are busier than average and so the coverage for this area is overestimated (by about 5.4%) 

when assuming a constant system-wide busy fraction.  In the latter case, the ambulances are less 
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busy than average and so the coverage for this area is underestimated (by almost 8%) when assuming a 

constant system-wide busy fraction.  This is significant because system designers may be concerned with 

equity in coverage between different communities, in addition to the overall system-wide coverage. 

Other performance measures, such as average response times and frequency of interdistrict responses, 

are easily calculated using the estimated dispatch probabilities but will not be considered in detail here.   

 

Table 2: Results for a sample ambulance allocation by station and averaged across stations (including 

estimated and simulated utilizations along with absolute and relative errors). 

 

Station, i 1 2 3 4 5 6 7 8 9 10 Average 

Servers, si   1 2 1 1 1 1 2 2 1 2 1.4 

Estimated ri  0.32 0.15 0.17 0.26 0.33 0.34 0.28 0.32 0.37 0.47 0.30 

Simulation ri   0.33 0.16 0.17 0.26 0.33 0.35 0.28 0.32 0.37 0.46 0.30 

Absolute error 0.006 0.006 0.003 0.000 0.002 0.008 0.001 0.003 0.001 0.008 0.004 

Relative error 1.9% 3.9% 1.9% 0.0% 0.6% 2.4% 0.2% 1.0% 0.2% 1.7% 1.4% 

 

95.3%

98.8%

92.2%

88.8%

95.5%

82.8%

86.9%

90.1%
88.5%

80%

85%

90%

95%

100%

Overall system High demand

region

Low demand

region

r  = 0

r = average pf r i 's

r i  - station specific

 

Figure 1: Comparison of estimated coverage for the same system using a system-wide busy fraction 

versus station-specific busy fractions.  
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